IMPACT OF LESS STRINGENT DEFERRAL POLICIES FOR MEN HAVING SEX WITH MEN

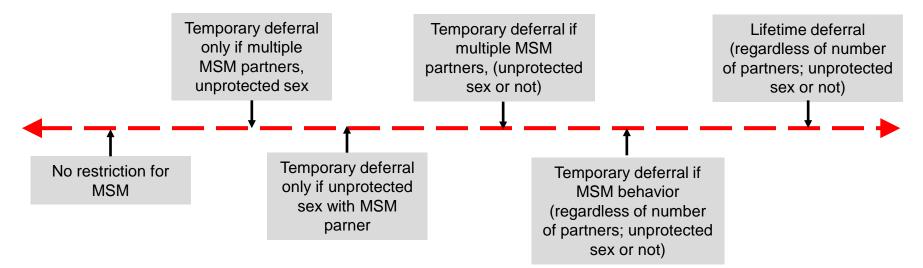
PREDICTIONS VERSUS REALITY

Marc Germain, M.D., Ph.D.

TTID Working Party ISBT, London June 26, 2015

BACKGROUND

Currently, the most common policy regarding the eligibility of men who had sex (MSM) with men :


'Permanent deferral'

- e.g. in the US: Sex with another man, even once, since 1977
- Other countries with a permanent deferral: Germany, France, Sweden, Hong Kong, China, Egypt, etc. (See Benjamin et al., Vox sanguinis 2011)
- But the international situation is changing...

BACKGROUND

Deferral policies for MSM: Inappropriate discrimination or justifiable safeguard?

What is the least restrictive deferral policy that could achieve optimal safety?

BACKGROUND

- How can the impact of a less restrictive deferral policy be evaluated?
 - Just implement the change and observe?
 Not very appealing from a risk management perspective
 - Perform a 'clinical trial'?

Feasibility is a major issue

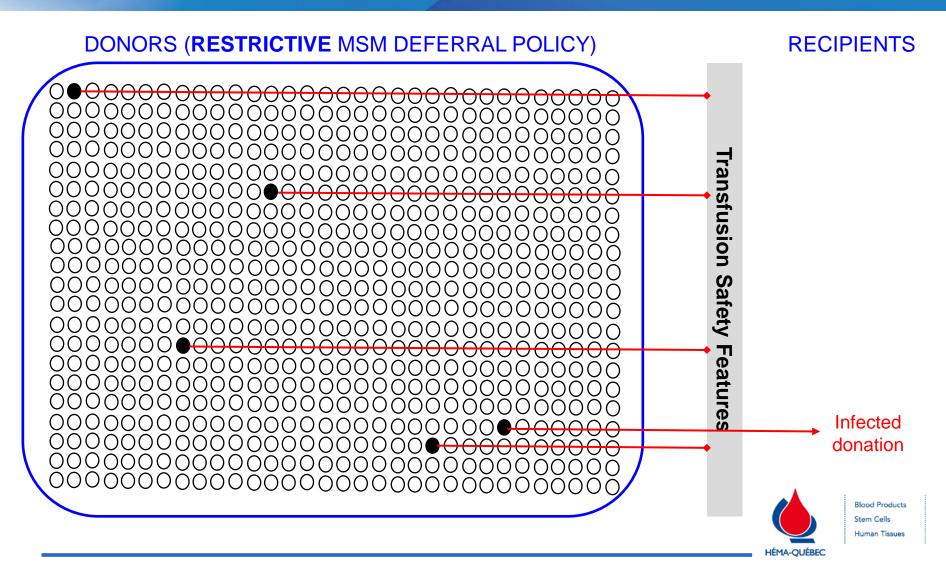
Model the impact of the change?

Let's talk about that...

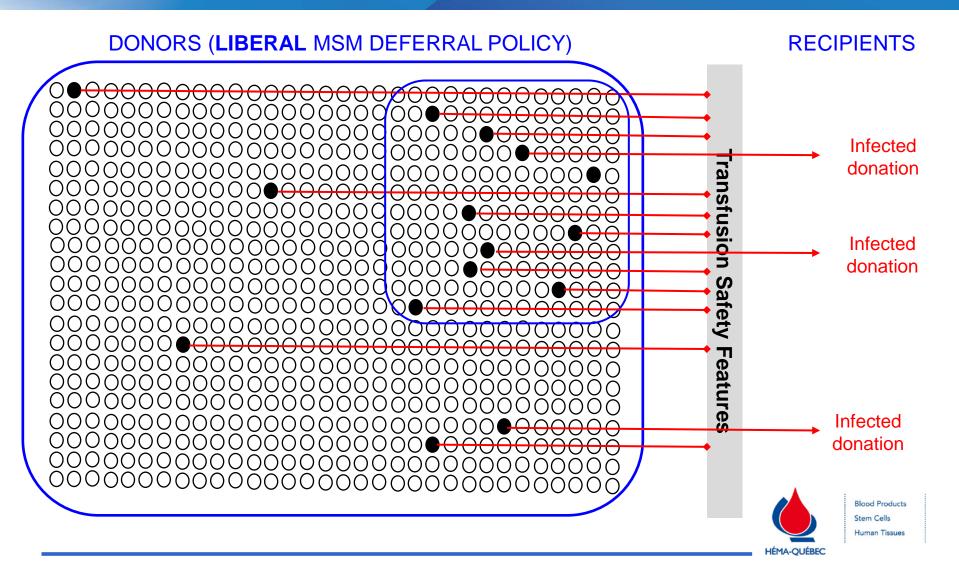
MODELLING THE IMPACT OF MSM DEFERRAL STRATEGIES

Who tried what and when...

First author	Reference	Year	What was modelled
Dayton, A	BPAC meeting, FDA	2000	Change from permanent to 5-year deferral
Germain, M	Transfusion, vol. 43, p. 25	2003	Change from permanent to 1-year deferral
Soldan, K	Vox Sanguinis, vol. 84, p. 265	2003	Change from permanent to 1-year deferral Change from permanent to no deferral
Anderson, SA	Transfusion, vol. 49, p. 1102	2009	Change from permanent to 5-year deferral Change from permanent to 1-year deferral
Davison, KL	Vox Sanguinis, vol. 101, p. 291	2011	Change from permanent to 5-year deferral
Pillonel, J	Vox Sanguinis, vol. 102, p. 13	2012	Change from permanent to no deferral (if only one MSM partner in last 12 months)
Davison, KL	Vox Sanguinis, vol. 105, p. 85	2013	Change from permanent to 1-year deferral
Germain, M	Vox Sanguinis, Epub	2013	Change from permanent to 5-year deferral


MODELLING THE IMPACT OF MSM DEFERRAL STRATEGIES

Common features of most models:


- How many new donors would become eligible and donate under the revised policy?
- How many of these donors would be infected with HIV?
- How many of these infected units would end up being transfused? (because of errors, test failures, etc.)
- What is the uncertainty around these numbers? (sensitivity analysis, Monte Carlo simulation)
- Note: Generally, the impact is calculated for the first year post-implementation

MSM RISK MODELS; A SIMPLIFIED VISUAL REPRESENTATION

MSM RISK MODELS; A SIMPLIFIED VISUAL REPRESENTATION

RISK MODEL; AN EXAMPLE

- The number of MSM who would become eligible and decide to donate in a given year (N1y), under a five-year deferral policy, is given by the formula:
 N_{1v} = MSM_{tot} X P_{elia} X P_{don}, where:
 - MSM_{tot} is the total number of MSM in the population P_{elig} is the proportion of these MSM who would become eligible
 - P_{don} is the proportion of those eligible who would donate

RISK MODEL; AN EXAMPLE

The number of HIV-contaminated units that would be made available for transfusion in a given year (U_{1y}), as a result of this five-year deferral policy, is obtained as follows:

 $U_{1y} = N_{1y} X P_{hiv} X (P_{falseneg} + P_{variant} + P_{window} + P_{tech} + P_{errinv} + P_{urgent}), where:$

 P_{hiv} is the proportion of newly eiligible MSM donors who would be unknowingly seropositive, and...

RISK MODEL; AN EXAMPLE

P_{falseneg} is the proportion of screening tests that give a false negative result (analytical sensitivity)

P_{variant} is the proportion of donations contaminated with a variant strain of HIV undetectable by current screening tests

 \mathbf{P}_{window} is the proportion of the donations made in the immunosilent phase of infection

P_{tech} is the proportion of false-negative screening test results due to system errors ('clinical' sensitivity)

P_{errinv} is the proportion of the units erroneously placed in inventory

P_{urgent} is the proportion units that are released to inventory on an emergency basis, before being tested for communicable diseases

MODELLING THE IMPACT OF MSM DEFERRAL STRATEGIES

Some differences between models:

- Policy change being considered
 - One-year vs. permanent deferral
 - Five-year vs. permanent deferral
 - Single sexual partner vs. permanent deferral
 - No restriction
- Risk being evaluated: HIV only, other risks
- Effect of policy on overall compliance to screening questionnaire
- Manner in which risk is quantitatively reported.

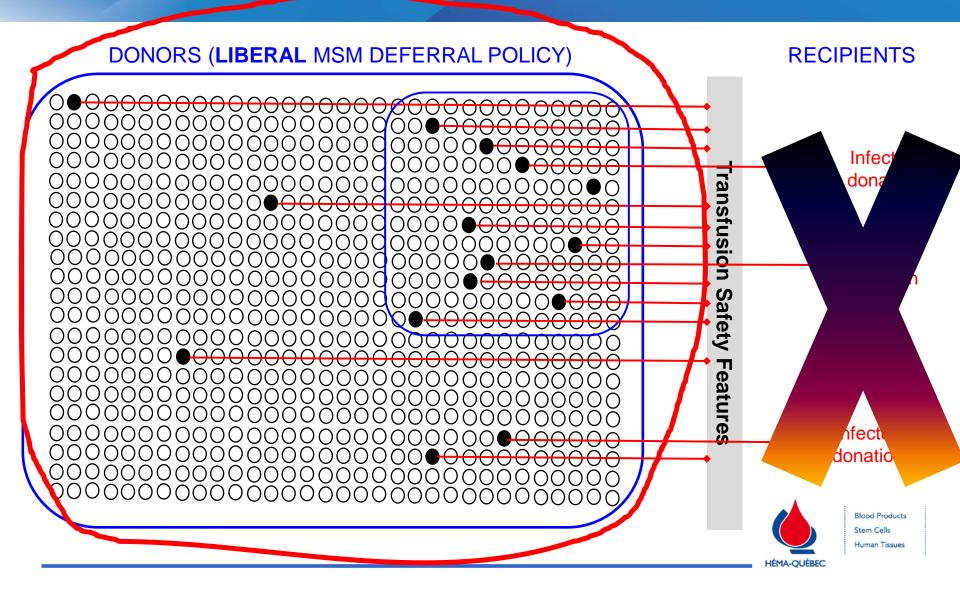
WHAT HAVE THE MODELS PREDICTED?

- Variable but very small additional risk to recipients
- Some examples:
 - Germain et al. (Vox sanguinis, 2013)

Impact of a five-year deferral policy in Canada: One additional HIV contaminated unit every 6,500 years

Anderson et al. (Transfusion, 2009)

Impact of a one-year deferral policy in the U.S.: One additional HIV contaminated unit every 5 years


CAN WE VALIDATE THE MODELS BASED ON ACTUAL EXPERIENCE?

- Some countries have changed from a permanent to a temporary deferral, e.g.
 Australia, UK, Canada
- What about the impact in terms of actual harm to recipients? (i.e. HIV transmission)
 - The 'predicted' increase in risk is too small to be detectable, even on a large scale

14

CAN WE LOOK AT OTHER PREDICTIONS FROM THE MODELS?

CAN WE LOOK AT OTHER PREDICTIONS FROM THE MODELS?

 Table 1 Estimation of additional human

 immunodeficiency virus (HIV)-infected donations

 that would be collected (probably during the first

 year) if active-MSM and MSM-past were accepted

 as blood donors

Soldan et al., Vox sanguinis 2003

London	Outside London	England and Wale
2 637 895	14 834 197	
94 923	767 149	
3.6%	5.2%	
3.6%	0.7%	
95 341	106 065	
4.9%	2.2%	
128 880	321 160	
2.8%	0.5%	
0.84%	0.07%	
1.67%	0·1 7 %	
96	27	123
39	11	50
	2 637 895 94 923 3·6% 3·6% 95 341 4·9% 128 880 2·8% 0·84% 1·67% 96	2 637 89514 834 19794 923767 1493.6%5.2%3.6%0.7%95 341106 0654.9%2.2%128 880321 1602.8%0.5%0.84%0.07%1.67%0.17%9627

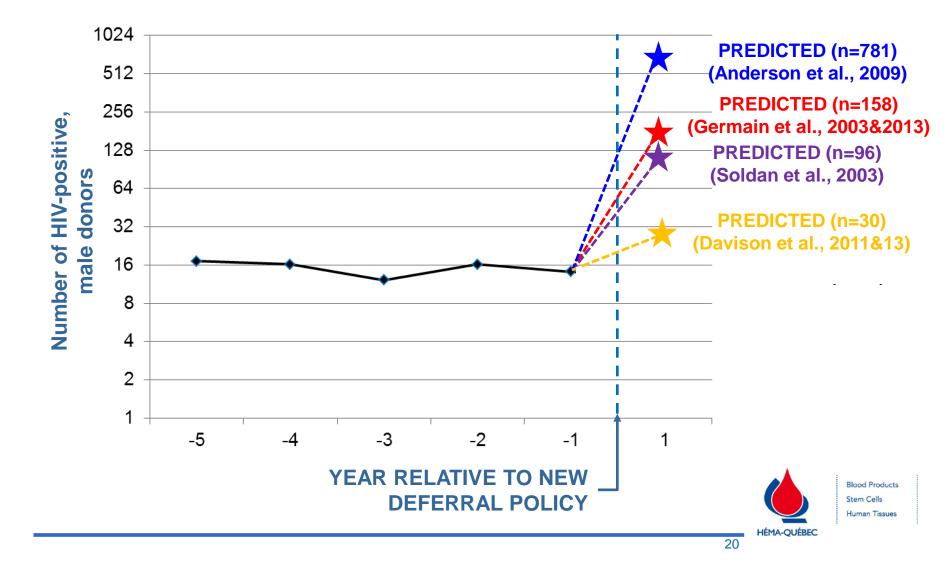
CAN WE 'VALIDATE' THESE PREDICTIONS?

- Yes, by looking at those countries that went from a permanent to a temporary deferral:
 - Australia (2000) **One-year deferral**
 - UK (2011) One-year deferral
 - Canada (2013) Five-year deferral
- Calculate the predicted increase in the number of HIVpositive male donors following the new deferral policy, according to various models
- Compare these predictions with the observed increase in the number HIV-positive male donors following the new deferral policy in these countries

17

OBSERVED VERSUS PREDICTED HIV-POSITIVE MALE DONORS FOLLOWING IMPLEMENTATION OF A TEMPORARY MSM DEFERRAL

- Annual HIV prevalence data for the countries that changed their deferral policy:
 - Australia (2000) Seed et al. Transfusion 2010; 50:2722
 - UK (2011) Katy Davison, personal communication
 - Canada (2013) Sheila O'Brien, personal communication
- For a given model, apply the parameters to each of the three countries, taking into account the size of the adult male population;
- For each country, calculate the expected number of HIV-positive donors who would be added to the donor pool (first year post-change)
- Pool the data from the three countries
- Compare observed and predicted HIV prevalence in male donors after Blood Products the policy change Stom Colle


Predicted

Human Tissues

FOR EXAMPLE: Predictions according to Soldan et al., 2003

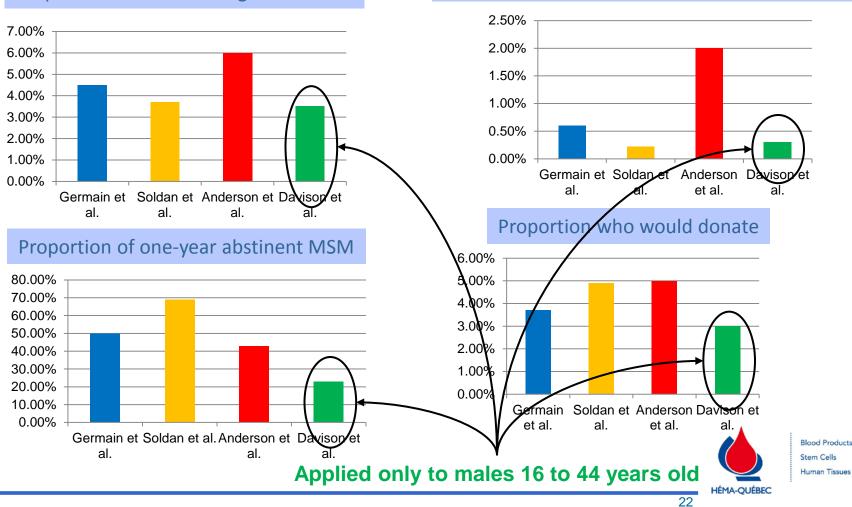
Parameter	U.K.	Australia	Canada			
Adult male population	17 472 092	7724348	12113000			
Proportion of MSM among adult males	0,037	0,037	0,037			
Number of MSM	651 446	288 002	451 633			
Proportion of recently abstinent MSM	0,69	0,69	0,49			
Number of newly eligible MSM	450 040	198 722	221 300			
Proportion of newly eligible MSM who would donate	0,049	0,049	0,049			
Number of newly eligible MSM who would donate	22 187	9 797	10 910			
Proportion of newly eligible MSM who would be unknowingly infected	0,00225	0,00225	0,001125			
Number of HIV-positive donors who would donate (during first year)	50	22	12			
TOTAL = 84 Héma-QUÉBEC 19						

OBSERVED VERSUS **PREDICTED** HIV PREVALENCE AMONG MALE DONORS FOLLOWING NEW MSM DEFERRAL POLICY (UK, CANADA, AUSTRALIA)

TWO QUESTIONS:

1) Why the discrepancies between the different models?

2) Why the discrepancies between the models and the reality?


21

lood Products tem Cells Iuman Tissues

SC-00013.6

Sources of discrepancies between different model predictions:

Proportion of unknowingly infected eligible MSM

Proportion of MSM among adult males

Why didn't we observe the predicted increase in HIV prevalence?

- Some parameters may have been greatly overestimated:
 - Proportion of MSM in the population?
 - Proportion of MSM who are abstinent?
 - Proportion of newly eligible MSM who would be unknowingly infected?
 - Proportion of newly eligible MSM who would donate (the first year, anyway)?

Limitations / other considerations

- Only' three countries considered
 - It still represents a total population of 121 millions
- No long term follow-up on all countries
 - However, it seems unlikely that it would 'flare up' after a lag period
 - No such trend observed in Australia (Seed et al., Transfusion 2010)
- Larger-than-expected impact of increased compliance following the revised criteria?
 - Possible, but no hard evidence; plus it would not explain the very wide gap between the predicted and the observed

Human Tissues

Limitations / other considerations

- Would that be true in other countries?
 - It's hard to argue that it would be very different elsewhere in the developed world
 - Some caution need to be applied for countries with high HIV prevalence
- What about models that looked at 'behavior-based' deferrals (e.g. Pillonel et al. Vox sanguinis 2011)
 - > No similar 'natural experiment' to validate the model
 - However, countries that use this approach seem to have higher rates of HIV among their donors (Italy, Spain).

uman Tissue

Limitations / other considerations

- What about the accuracy of other parameters in those models (test error rates, quarantine release errors, etc.)?
 - A moot point, if there is no increase in the number of prevalent infections!
- What about other infections (HBV, HCV, HTLV,...)
 - > It seems very unlikely that it would be a different story.

26

CONCLUSIONS

- Models suggest that going from a permanent to a short term deferral for MSM poses very little (virtually undetectable) risk to recipients;
- Based on observed HIV prevalence in countries that adopted a temporary deferral, it appears that most models greatly overestimated this (very small) risk;
- Based on these considerations, a permanent deferral policy for MSM is hard to defend, at least from the perspective of HIV risk

27

THANK YOU!

Questions?

Blood Products Stem Cells Human Tissues

SC-00013.6

28