

Protecting and improving the nation's health

The 'MSM Model' Assessing HIV risk among MSM donors

Katy Davison - Public Health England, UK Marc Germain and Yves Grégoire – Hema-Quebec, Canada Clive Seed – Australian Red Cross Blood Service **On behalf of the ISBT TTID Working Party STRAP Sub Group**

September 2016, ISBT Dubai

Katy.davison@phe.gov.uk

Background & rationale

Permanent deferral (est. 1980s) of men who have sex with men (MSM) to minimise TTI-HIV risk increasingly challenged

Some blood services relaxed to a time-based deferral

- Mathematical models developed to assess impact on HIV risk
- Approaches/assumptions differed; all predicted an increase, but of varying magnitude
- Post change validation suggests models overestimated risk (Germain *et al.* 2016)

Aim & methods

- To develop an **'optimal model'** to quantitate the TTIassociated risk of reducing the duration of deferral for MSM
- The ISBT working group (WG) undertook:
- 1. A review & assessment of current models to determine a basis for 'optimal model'
- 2. Developed & validated 'optimal model'
- 3. Identify limitations, assess applicability & create a FINAL model

Review and assessment process

- 1. Identify candidate models
- 2. Model review 'template' developed by WG Format, assumptions, inputs, equations, scope, limitations
- 3. Template for each candidate completed by two WG members
- 4. WG met to discuss whether any pre-existing model was 'optimal'
- Consensus was no but that UK model (Davison et al) and Canadian model (Germain et al) could used as a basis for an 'optimal model'

Candidate models reviewed (the long list)

	Year	MSM deferral	Summary	Optimal model (reason)?
Dayton (US)	2000	5у		No
BPAC meeting, FDA				
Germain (Canada)	2003	1y	HIV risk – false neg, error, variant,	No (input parameters
Transfusion, vol. 43, p. 25			technical, urgency, WP. Simulation.	unpublished)
Soldan (UK)	2003	5y or no deferral	HIV risk new & repeat donors – WP,	No (deferral period)
Vox Sang vol. 84, p. 265			false neg & error. Compliance.	
Anderson (US) Transfusion,	2009	5y and 12m	HIV & HIV risk - false neg & QRE.	No (only error/false
vol. 49, p. 1102			Simulation.	negative risk)
Davison (UK)	2011	5y or no deferral	HIV risk new & repeat donors – WP,	No (deferral period)
Vox Sang vol. 101, p. 291			false neg & error. Compliance.	
Edgren (Sweden)	2012	6-months, with	HBV, HCV & HIV risk – WP. Compliance	No (only WP risk,
<i>Vox Sang</i> Vol. 103. 111		compliance @ 90%, 95% and 99%		accuracy of input data)
Pillonel (France)	2012	>1 partner <12m	HIV risk – WP.	No (only WP risk,
Vox Sang, vol. 102, p. 13				limitations of input
				data)
Davison (UK)	2013	1y	HIV risk new & repeat donors – WP,	Yes
Vox Sang vol. 105, p. 85			false neg & error. Compliance.	
Germain (Canada)	2014	5y	HIV risk – false negative, error, variant,	Yes
Vox Sang,vol.106, p. 372			technical, urgency. Simulation.	

The UK and Canada risk models

Variables in the model /other characteristics	UK	Canada
Newly eligible MSM - number	Yes	Yes
Newly eligible MSM - donor rate	Yes	Yes
Newly eligible MSM – number undiagnosed HIV	Yes	Yes
Risk due to prevalent HIV:		
HIV testing sensitivity	Yes	Yes
HIV testing error rate	Yes	Yes
HIV variant strain undetectable	No	Yes
Unit release error rate	No	Yes
Emergency release rate	No	Yes
Risk due to window period HIV (noncompliant MSM)	Yes	No
Sensitivity analysis	Yes	No
Calculation of 'baseline' risk (risk difference)	Yes	Νο
Monte Carlo simulation	No	Yes

The risk calculation in the optimal model

Estimating HIV prevalence with MSM

HIV prevalence

(HIV positive donations + expected extra MSM HIV) (tested donations + expected extra MSM

Expected extra MSM	No. male = populatio	% MSM male s × population x on (MSMtot)	% MSI (1	M eligible P _{elig})	x Donor rate
Expecte MSM	d extra ₌ HIV	Expected extra tested donation	x	Proportion be un se	n of P _{elig} who would knowingly HIV eropositive

Risk due prevalent HIV

Parameter values in the models

	Canada	UK	Optimal model	Distribution for simulation
MSM_{tot} : Proportion of male population MSM	4.5% (3.0 – 6.0%)	3.5%	3.5%	None
P _{elig} : Proportion of MSM eligible	22.5% (15 – 30%)	20%	20%	None
\mathbf{P}_{don} : Proportion of \mathbf{P}_{elig} donate	3.7%	3.4%	3.4%	None
P_{hiv} : Proportion P_{elig} HIV undiagnosed	0.6% (0.2 – 1.0%)	0.334%	0.334%	None
P _{falseneg} : HIV test sensitivity	1:500,000 (1:1 million - 1:200,000)	1:2,000	1:2,000	None
P _{tech} : HIV testing error rate	1:100,000 (1:1 million - 1:35,500)	1:2,500	1:1,000,000	None
P _{variant} : Proportion undetectable strain HIV	1:1,000,000 (1:10 million - 1:500,000)	NA	1:1,000,000 (1:10 million - 1:500,000)	Triangular
P _{errinv} : Proportion units in inventory erroneously	1:10,000,000 (1:100 million - 1:4 million)	NA	1:10,000,000 (1:100 million - 1:4 million)	Triangular
P _{urgent} : Prop of units released on an emergency basis < testing	1:500,000 (1:1 million - 1:250,000)	NA	1:500,000 (1:1 million - 1:250,000)	Triangular

Risk due to WP HIV - MSM non-compliance

Scenarios relating to compliance defined as follows:

Bi - Absolute compliance unchanged: Total number of non-compliant MSM donors remains the same under the temporary deferral policy, compared to the lifetime deferral, i.e. no added non-compliant MSM donors.

Bii - **Relative compliance unchanged:** Total number of non-compliant MSM donors increases under the temporary deferral policy, compared to lifetime deferral, in the same proportion that there is an increase in the number of prevalent HIV MSM donors

Biii - Perfect compliance: Total number of non-compliant MSM donors goes down to zero under the temporary deferral policy

Biv & Bv - Relative compliance increases or decreases: Defined as worse/better than base-case but not perfect

The simulation

Data parameters from UK model (2005-2007): relating to some relating to errors/failures – Canada (HIV variant, error and Purgent)

Distributions of parameters defined as far as possible: Most shown on previous slide, in addition:

WP (10 days :56% NAT, 44%Ab/Ag) - Normal

Z (new donors incidence adjustment) – Log normal.

Number HIV positive (prevalent and incident, MSM or otherwise) – Poisson.

Calculated number of expected MSM HIV positives (prevalent and incident) for scenarios Bi-Bv

Monte Carlo simulation (10,000 iterations) using SAS Enterprise Guide version 4.1 (SAS Institute, Cary, NC, USA): The mean value for HIV risk per million donations with 95% confidence intervals, for base-case and scenarios

Results from the 'optimal model'

UK data (England and Wales 2005-2007)

	Prevalence	Incidence	Risk	% base-case	1 /million
A. Risk under permanent MSM deferral	1.28	0.91	0.246		4.07
MSM deferred 12m – scenarios:					
Bi. prevalence 10% higher, MSM compliance is 95%	1.41	0.91	0.247	100.4	4.05
Bii. prevalence and incidence 10% higher, MSM compliance is 95%	1.41	1.00	0.270	109.9	3.70
Biii. prevalence 10% higher, compliance 100%	1.41	0.63	0.178	72.2	5.63
Biv. prevalence 10% higher, compliance is 97.5%	1.41	0.72	0.197	80.3	5.07
BV. prevalence 10% higher, compliance is 92.5%	1.41	1.19	0.320	130.2	3.12

Results from the 'optimal model' Mean and 95% CI

A: Risk under permanent MSM deferral (compliance 95%)

HIV risk per million donations

MSM deferred 12 months

Validating the model

	'Optimal	model'	UK model		
UK data (England and Wales 2005-2007)	Point estimate (per million donations)	95% range (Monte Carlo)	Point estimate (per million donations)	95% range (Monte Carlo)	
A. Permanent deferral	0.246	0.157-0.354	0.227	0.157-0.328	
MSM deferred 12m – scenarios:					
Bi. prevalence 10% higher, MSM compliance is 95%	0.247	0.158-0.356	0.228	0.168-0.306	
Bii. prevalence and incidence 10% higher, MSM compliance is 95%	0.270	0.176-0.386	0.249	0.186-0.323	
Biii. prevalence 10% higher, MSM compliance 100%	0.178	0.102-0.259	0.161	0.112-0.228	

Validating the model with post change data

A: Risk under permanent MSM deferral (compliance 95%)

Bi: Compliance 95%

Bii: Incidence ↑ 10% Compliance 95%

Biii: Compliance 100% Incidence 0

Biv:Compliance 97.5% Incidence ↓ accordingly

Bv:Compliance 92.5% Incidence ↑ accordingly

Observed MSM data 2012/2014 Prevalence & incidence ↓ (all other parameters UNCHANGED)

MSM deferred 12 months

10%

←

prevalence

Conclusions

'Optimal' model defined: considers risk due to WP donations from noncompliant MSM and risk due to prevalent infections from errors/failures, also a measure of uncertainty (simulation)

Impact of MSM deferral on HIV risk remains small, albeit slightly greater than estimated in the original UK model: differences relate mostly to additional risk due to prevalent HIV arising from errors/failures (from Canadian model)

MSM compliance appears to be underestimated and could be revised: HIV risk estimates made using UK data post change suggest compliance exceeds 95%. This is supported by donor survey data (not shown)

The value over other models includes:

- Considers compliance
- Measure of uncertainty from simulation (95% Cl)
- Adaptable to different populations (population specific data required)
- Relative differences in risk (bases-case v alternative scenarios)

Limitations & next steps

Assumptions about parameters

?MSM donate at same rate as other donors ?accuracy of estimate of undiagnosed HIV in MSM ?accuracy of estimate of MSM sex <12m Often paucity of data in population of interest (potentially newly eligible donors) adds to uncertainty of outcome

Next steps : finalise the model (?), peer review publication, potentially broader application to other countries (pre-change)

Acknowledgements

Thanks to other members of the ISBT TTID WP SRAP Subgroup involved in this project (alphabetical): Mike Busch, Brian Custer, Sheila O'Brien, Josiane Pillonel, Whitney Steele