Immunohematology Case Studies
2017 - 1

Edmond Lee MSc, FIBMS, FRSM
Red Cell Immunohaematology, NHSBT, UK
Clinical History

• A 73 year old male
• Referred for redo vascular surgery on Jun 2016
• Osteomyelitis 2 years ago (May 2014)
• Antibody screen (ABID) was negative
• Transfused 3 occasions on Nov 2015 (a total 15 units during surgery)
• ABID positive (Jun 2016)
• Sample referred to Reference Laboratory after routine hours for investigation for following date surgery
• Patient is from Philippines & speaks Tagalog
Serologic and Transfusion History

Antibody screen negative on:
- 18 May 2014
- 05 Oct 2015
- 26 Nov 2015

Patient was transfused the following:
- 28 Nov 2015 9 units red cells transfused
- 23 Nov 2015 4 units red cells transfused
- 26 Nov 2015 2 units red cells transfused
Current Sample Presentation Data

- ABO/Rh: A, D+C+c+E+e+,K-
- DAT: negative
- Antibody Screen Method: using IH1000
- Antibody Screen Results: Panel reactive
- Antibody Identification Method: Bio-Rad IAT (3+), Bio-Rad enzyme IAT (4+) and Tube LISS-IAT (2+)

Antibody Identification Preliminary Results:
- Pan reactive suggestive of antibody to a high frequency antigen
Challenge with the Current Presentation

• Extended phenotyping was performed as this appeared to be antibody to a high prevalence antigen
• M+S+s+ excluded anti-U
• Lu(a-b+), Kp(a+b-) excluded anti-Lu^b or anti-Kp^b
• Fy(a+b-) excluded anti-Fy^3
• Jk(a-b-) suggestive the presence of anti-Jk3
<table>
<thead>
<tr>
<th></th>
<th>D</th>
<th>C</th>
<th>c</th>
<th>E</th>
<th>e</th>
<th>Cw</th>
<th>K</th>
<th>k</th>
<th>Fya</th>
<th>Fyb</th>
<th>Jka</th>
<th>Jkb</th>
<th>Lea</th>
<th>Leb</th>
<th>P1</th>
<th>M</th>
<th>N</th>
<th>S</th>
<th>s</th>
<th>Gel IAT</th>
<th>Gel Enz IAT</th>
<th>Tube IAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>4</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>w</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3+</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>3+</td>
</tr>
<tr>
<td>6</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3+</td>
</tr>
<tr>
<td>7</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3+</td>
</tr>
<tr>
<td>8</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>3+</td>
</tr>
<tr>
<td>9</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>3+</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>4+</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>3+</td>
<td>4+</td>
</tr>
<tr>
<td>12</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>0</td>
<td>+</td>
<td>0</td>
<td>3+</td>
<td>4+</td>
</tr>
</tbody>
</table>
Jk(a-b-) panel

| | D | C | c | E | e | Cw | K | k | Fya | Fyb | Jka | Jkb | Lea | Leb | P1 | M | N | S | s | Gel IAT | Tube IAT |
|---|---|---|---|---|---|----|---|---|-----|-----|-----|-----|-----|----|---|---|---|---|--------|----------|
| 1 | + | 0 | + | + | + | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | + | + | + | + | 0 | + | 0 |
| 2 | + | + | 0 | 0 | + | 0 | + | + | 0 | 0 | 0 | 0 | 0 | 0 | + | + | 0 | 0 | + | 0 |
| 3 | 0 | 0 | + | 0 | + | 0 | 0 | + | 0 | 0 | 0 | 0 | 0 | 0 | + | + | + | + | + | 0 |
Further Work

Testing for 2M Urea lysis

Jk(a-b-) cells lack the Urea Transporter (UT-B1) encoded by the SLC14A1 gene, and therefore are not lysed with 2M urea solution
Jk(a-b-) phenotype

- Jk_{null} or Jk(a-b-) first reported by Pinkerton et al (1959) from a Filipino woman of Chinese & Spanish ancestry
- Cases of Jk(a-b-) are more frequent in the Polynesian & Finns
- Other populations, Chinese, Japanese, Asian Indians, Native Brazilians, African American, Tunisian, and European descent
Anti-Jk3

- Reacted optimally by IAT
- Enhanced by enzyme treated RBC
- Usually IgG, less common to be than IgM antibodies
- Complement binding
- Found in a non-transfused male
- No preference for Jk(a+b-) or Jk(a-b+)
- Not a mix of anti-Jk^a and anti-Jk^b
- No to severe/immediate or delayed transfusion reaction
- No to mild HDFN
- Auto anti-Jk3 has been reported
Transient Jk(a-b-) phenotype

Case report of a transient Jk(a-b-) phenotype

- Russian woman with myelofibrosis who made anti-Jk3 at the time her RBCs typed Jk(a-b-)
- Severe transfusion reaction
- Five weeks later typed as Jk(a+wb-)
- Anti-Jk^b was detected
- One year later typed as Jk(a+b-) with no anti-Jk3 and/or anti-Jk^b detected
Summary of Case Challenges

- Jk(a-b-) donations are rare
- Frozen and recovery donations were required for transfusion purpose
- Only anti-Jk3 was identified post transfusion in this case, using Jk(a-b-), Fy(a-b+) RBCs (exclusion of anti-Fy^b in the Fy(a-b+) patient)
- No confirmation of the presence of additional anti-Jk^a or anti-Jk^b
Lessons Learned by the Case

- Molecular basis of the Jk(a-b-) phenotype are diverse among the different populations.
- 2M Urea solution is considered easier and cheaper than genotyping to mass screen Jknull blood donors in countries with a significant prevalence of this phenotype.
- The ethnic origin and/or spoken language of the patient can give very important information about the putative rare blood type. In this case, the patient spoke Tagalog which is a Filipino dialect and quickly provided the clue for the antibody to a high prevalence antigen to be a likely anti-Jk3.
Molecular basis for JK phenotype

- **JK** gene ([SLC14A1], [HUT11A])
- Located at chromosome 18q12.3
- Jk\(^a\) antigen: p.Asp280 (c.838G)
- Jk\(^b\) antigen: p.As280 (c.838A)

Carrier molecule

Multi-pass glycoprotein.

From Reid, Lomas-Francis & Olsson, The Blood Group Antigen Factsbook, 3rd Ed 2012
Molecular based of some silencing of **JK*A or JK*B alleles**

Reference allele, **JK*02 (NM_015865)**, encodes Jk^b, Jk^3

<table>
<thead>
<tr>
<th>Allele name</th>
<th>Exon/ intron</th>
<th>Nucleotide</th>
<th>Amino acid</th>
<th>Ethnicity (prevalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK*01N.01</td>
<td>4 & 5</td>
<td>Exons 4&5 deleted</td>
<td>Initiation Met absent</td>
<td>Tunisian, English, Bosnian (Rare)</td>
</tr>
<tr>
<td>JK*01N.02</td>
<td>5</td>
<td>202C>T</td>
<td>Gln68Stop</td>
<td>Caucasian, American (Rare)</td>
</tr>
<tr>
<td>JK*01N.03</td>
<td>7</td>
<td>582C>G</td>
<td>Tyr194Stop</td>
<td>Swiss, English (Few)</td>
</tr>
<tr>
<td>JK*01N.04</td>
<td>10</td>
<td>956C>T</td>
<td>Thr319Met</td>
<td>African American, (Rare)</td>
</tr>
<tr>
<td>JK*01N.05</td>
<td>7</td>
<td>561C>A</td>
<td>Tyr187Stop</td>
<td>African American (Rare) African Brazilian (Many)</td>
</tr>
<tr>
<td>JK*01N.06</td>
<td>Intron 5</td>
<td>IVS5→1g>a</td>
<td>Exon 6 skipped; in frame</td>
<td>Asian Indian (Rare)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Allele name</th>
<th>Exon/ intron</th>
<th>Nucleotide</th>
<th>Amino acid</th>
<th>Ethnicity (prevalence)</th>
</tr>
</thead>
<tbody>
<tr>
<td>JK*02N.01</td>
<td>Intron 5</td>
<td>IVS5→1g>a</td>
<td>Exon 6 skipped; in frame</td>
<td>Polynesian, Chinese (Several)</td>
</tr>
<tr>
<td>JK*02N.02</td>
<td>Intron 5</td>
<td>IVS5→1g>c</td>
<td>Exon 6 skipped; in frame</td>
<td>Chinese (Rare)</td>
</tr>
<tr>
<td>JK*02N.03</td>
<td>5</td>
<td>222C>A, 499A>G</td>
<td>Asn74Lys, Met167Val</td>
<td>Taiwanese (Rare)</td>
</tr>
<tr>
<td>JK*02N.04</td>
<td>Intron 7</td>
<td>IVS7→1g>t</td>
<td>Exon 7 skipped; frameshift→Leu223Stop</td>
<td>French (Rare)</td>
</tr>
<tr>
<td>JK*02N.05</td>
<td>8</td>
<td>723delA</td>
<td>Frameshift→Ile262Stop</td>
<td>Hispanic American (Rare)</td>
</tr>
<tr>
<td>JK*02N.06</td>
<td>9</td>
<td>871T>C</td>
<td>Ser291Pro</td>
<td>Finns (Several)</td>
</tr>
<tr>
<td>JK*02N.07</td>
<td>9</td>
<td>896G>A</td>
<td>Gly299Glu</td>
<td>Taiwanese (Rare)</td>
</tr>
<tr>
<td>JK*02N.08</td>
<td>10</td>
<td>956C>T</td>
<td>Thr319Met</td>
<td>Indian, Pakistani (Rare)</td>
</tr>
<tr>
<td>JK*02N.09</td>
<td>5</td>
<td>191G>A</td>
<td>Arg64Gln</td>
<td>Black (Rare)</td>
</tr>
</tbody>
</table>

From Reid, Lomas-Francis & Olsson, The Blood Group Antigen Factsbook, 3rd Ed 2012
References

3. Ellisor SS, Reid ME, O’Day To et al. Autoantibodies mimicking anti-Jk\(^b\) plus anti-Jk\(^3\) associated with autoimmune haemolytic anemia in a primipara who delivered an unaffected infant. *Vox Sanguinis* 1983;45:53-59.

